martes, 18 de noviembre de 2008

Ondas de choque


Cuando un avión se mueve a velocidad subsónica, las variaciones de presión que se producen en el aire (el ruido) viajan más rápido que él y se dispersan con facilidad. Si el avión viaja más deprisa que la velocidad del sonido, las variaciones de presión no se pueden dispersar, por lo que permanecen en la parte delantera del avión en forma de cono. El sonido asociado a estas ondas de choque se proyecta en tierra como una bomba sónica.
Los estudios mediante observaciones ópticas de proyectiles de artillería revelan la naturaleza de las perturbaciones atmosféricas encontradas durante el vuelo. A velocidades subsónicas, por debajo de Mach 0,85, la única perturbación atmosférica es una turbulencia en la estela del proyectil. En la zona transónica, entre Mach 0,85 y Mach 1,3, aparecen ondas de choque a medida que aumenta la velocidad; en el rango más bajo de esa zona de velocidades, las ondas de choque surgen de cualquier protuberancia abrupta en el contorno suave del proyectil. Cuando la velocidad supera Mach 1, las ondas de choque surgen de la parte delantera y la cola y se propagan en forma de cono desde el proyectil. El ángulo del cono es tanto menor cuanto mayor es la velocidad del proyectil. Así, a Mach 1, la onda es esencialmente un plano; a Mach 1,4 (1.712 km/h al nivel del mar), el ángulo del cono es de aproximadamente 90°; a Mach 2,48 (unos 3.030 km/h), la onda de choque procedente del proyectil tiene un ángulo cónico ligeramente menor de 50°. La investigación en este campo ha permitido el diseño de los modernos aviones de gran velocidad, en los que las alas se inclinan hacia atrás formando ángulos de hasta 60° para evitar la onda de choque procedente de la parte delantera del avión.
Maximización de la eficiencia
Entre otros factores estudiados por la investigación sobre proyectiles de artillería supersónicos figuran la forma ideal de los proyectiles y el comportamiento de un gas que fluye a altas velocidades. La llamada forma de gota, que es la forma aerodinámica ideal para velocidades subsónicas, es muy poco eficaz en la zona supersónica debido a su gran superficie frontal, que comprime el aire y da lugar a ondas de choque de gran amplitud que absorben mucha energía.
Cuando un gas fluye por un tubo estrechado, como la tobera de un cohete, a velocidades subsónicas, la velocidad de flujo aumenta y la presión disminuye en el cuello del estrechamiento. A velocidades supersónicas se produce el fenómeno inverso, y la velocidad de flujo aumenta en un tubo divergente. Así, los gases de escape de un cohete, al acelerarse en la tobera hasta la velocidad del sonido, aumentan aún más su velocidad, y por tanto su empuje, en el ensanchamiento divergente de la tobera, con lo que se multiplica la eficiencia del cohete. Otro factor que los diseñadores de cohetes conocen desde hace tiempo es la influencia directa de la presión atmosférica reinante sobre la eficiencia del vuelo a velocidades supersónicas. Cuanto más próximo esté el medio circundante a un vacío perfecto, más eficiente es el motor del avión o el cohete. El rango de velocidades de un avión supersónico también puede aumentarse reduciendo la superficie, o sección transversal, que presenta al aire. En los aviones que operan a velocidades supersónicas es imprescindible aumentar el peso del aparato aumentando su longitud, hacerlo más esbelto y dotarlo de un frente en forma de aguja. En los años posteriores a la II Guerra Mundial, los centros de investigación en aerodinámica construyeron túneles de viento donde se podían probar maquetas o piezas de aviones en corrientes de aire supersónicas.
Regla de las superficies
Un importante avance en la aeronáutica, gracias a las investigaciones en túneles de viento, donde se descubrió la regla de las superficies para el diseño de aviones supersónicos. Según este principio, el aumento abrupto en la resistencia al avance que se produce a velocidades transónicas se debe a la distribución de la superficie total de la sección transversal en cada punto del avión. Estrechando el fuselaje en la zona donde está unido a las alas, la reducción en la sección transversal total del fuselaje y las alas disminuye la resistencia al avance del aparato. El diseño de Whitcomb, llamado de talle de avispa, hizo posible un aumento del 25% en el rango de velocidades supersónicas sin necesidad de una mayor potencia en los motores.
En el pasado se utilizaba el término supersónica en un sentido más amplio, e incluía la rama de la física ahora conocida como ultrasónica, que se ocupa de las ondas de sonido de alta frecuencia, generalmente por encima de los 20.000 hercios (Hz).

Rozamiento aerodinámico


Cuando un objeto se desplaza a través de un fluido, el valor del rozamiento depende de la velocidad. En la mayoría de los objetos de tamaño humano que se mueven en agua o aire (a velocidades menores que la del sonido), la fricción es proporcional al cuadrado de la velocidad. En ese caso, la segunda ley de Newton se convierte en: La constante de proporcionalidad k es característica de los dos materiales en cuestión y depende del área de contacto entre ambas superficies, y de la forma más o menos aerodinámica del objeto en movimiento.
Supersónica
La supersónica, una rama importante de la aerodinámica, se ocupa de los fenómenos que tienen lugar cuando la velocidad de un sólido supera la velocidad del sonido en el medio (generalmente aire) en que se desplaza. La velocidad del sonido en la atmósfera varía según la humedad, la temperatura y la presión. Como la velocidad del sonido es un factor crucial en las ecuaciones aerodinámicas y no es constante, suele emplearse el número de Mach. El número de Mach es la velocidad respecto a la atmósfera del proyectil o el avión dividida entre la velocidad del sonido en el mismo medio y con las mismas condiciones. Así, al nivel del mar, en condiciones normales de humedad y temperatura, una velocidad de 1.220 km/h representa un número de Mach de 1. En la estratosfera, debido a las diferencias de densidad, presión y temperatura,esta misma velocidad correspondería a un número de Mach de 1,16. Expresando las velocidades por su número de Mach, en vez de en kilómetros por hora, puede obtenerse una representación más exacta de las condiciones que se dan realmente durante el vuelo.

Teorema de Bernoulli


La forma de un objeto afecta enormemente a la resistencia al movimiento que ejerce el aire sobre él. Por ejemplo, una esfera (arriba), y sobre todo una superficie cuadrangular (abajo), obligan al aire a cambiar de dirección, con lo que frena al objeto. Un plano aerodinámico (centro) apenas perturba el aire, por lo que sufre poca resistencia al avance.
Una de las leyes fundamentales que rigen el movimiento de los fluidos es el teorema de Bernoulli, que relaciona un aumento en la velocidad de flujo con una disminución de la presión y viceversa. El teorema de Bernoulli explica, por ejemplo, la fuerza de sustentación que actúa sobre el ala de un avión en vuelo. Un ala (o plano aerodinámico) está diseñada de forma que el aire fluya más rápidamente sobre la superficie superior que sobre la inferior, lo que provoca una disminución de presión en la superficie de arriba con respecto a la de abajo. Esta diferencia de presiones proporciona la fuerza de sustentación que mantiene el avión en vuelo.
Los coches de carrera son muy bajos con el fin de que el aire se desplace a gran velocidad por el estrecho espacio entre la carrocería y el suelo. Esto reduce la presión debajo del vehículo y lo aprieta con fuerza hacia abajo, lo que mejora el agarre. Estos coches también llevan en su parte trasera un plano aerodinámico con forma de ala invertida para aumentar la fuerza contra el suelo.
La vela de un balandro en movimiento también constituye un plano aerodinámico. Otro aspecto importante de la aerodinámica es la resistencia al avance que experimentan los objetos sólidos que se mueven a través del aire. Por ejemplo, las fuerzas de resistencia que ejerce el aire que fluye sobre un avión deben ser superadas por el empuje del reactor o de las hélices. La resistencia al avance puede reducirse significativamente empleando formas aerodinámicas. Cuando el objeto no es totalmente aerodinámico, la resistencia aumenta de forma aproximadamente proporcional al cuadrado de su velocidad con respecto al aire. Por ejemplo, la potencia necesaria para propulsar un coche que avanza de forma uniforme a velocidades medias o altas se emplea fundamentalmente en superar la resistencia del aire.

Resistencia aerodinámica


Se denomina resistencia aerodinámica, o simplemente resistencia, al componente de la fuerza que sufre un cuerpo al moverse a través del aire en la dirección de la velocidad relativa entre el aire y el cuerpo. La resistencia es siempre de sentido opuesto a dicha velocidad, por lo que habitualmente se dice de ella que es la fuerza que se opone al avance de un cuerpo a través del aire.
De manera más general, para un cuerpo en movimiento en el seno de un
fluido cualquiera, tal componente recibe el nombre de resistencia fluidodinámica; así, en el caso del agua se denomina resistencia hidrodinámica, etc.

Al igual que con otras fuerzas aerodinámicas, se utilizan coeficientes aerodinámicos que representan la efectividad de la forma de un cuerpo para el desplazamiento a través del aire. Su coeficiente asociado es conocido popularmente como coeficiente de penetración, coeficiente de resistencia o coeficiente aerodinámico, siendo esta última denominación especialmente incorrecta ya que existen varias fuerzas aerodinámicas, con sus respectivos coeficientes aerodinámicos, y cada uno de ellos tiene un significado diferente.
La forma en que se estudia la resistencia aerodinámica presenta algunas particularidades según el campo de aplicación.

La fórmula de la resistencia aerodinámica total creada por un automóvil en movimiento es idéntica a la utilizada en aeronáutica.
La utilización del coeficiente es mucho más cómoda que la utilización de fuerzas.

Factores que afectan a la aerodinámica de un coche
Las formas suaves (parachoques, retrovisores, faros,...) suelen mejorar la aerodinámica. Aunque, un final del techo o del maletero en esquina y dirigido hacia abajo (
Audi A2, Citröen C4, Primer Astra y Irisar PB), es mejor que un final de techo o maletero redondeado( Megane Classic y último Clío).
Los bajos carenados son una solución poco utilizada, pero efectiva. Además, se pueden utilizar para pegar más el coche al firme, con muy poca penalización en la resistencia.(Renault Clío Sport 2006)
La cantidad de superficie que se enfrenta al viento es junto con el
Coeficiente aerodinámico los dos factores que determinan la resistencia aerodinámica final.
Aerodinámica engañosa El que un coche sea más o menos aerodinámico depende más de detalles tales como el enrasado de las lunas que de formas espectaculares (
Citröen CX, Lamborghini Countach ).
Dos ejemplos:

AERODINAMICA


La aerodinámica es la rama de la mecánica de fluidos que estudia las acciones que aparecen sobre los cuerpos sólidos cuando existe un movimiento relativo entre éstos y el fluido que los baña, siendo éste último un gas y no un líquido, caso éste que se estudia en hidrodinámica.

En la solución de un problema aerodinámico normalmente se hace necesario el calculo de varias propiedades del fluido, como pueden ser velocidad, presión, densidad y temperatura, en función de la posición del punto estudiado y el tiempo.
Modelizando el campo fluido es posible calcular, en casi todos los casos de manera aproximada, las
fuerzas y los momentos que actúan sobre el cuerpo o cuerpos sumergidos en el campo fluido. La relación entre fuerzas sobre un cuerpo moviéndose en el seno de un fluido y las velocidades viene dada por los coeficientes aerodinámicos. Existen coeficientes que relacionan la velocidad con las fuerzas y coeficientes que relacionan la velocidad con los momentos. Conceptuamente los más sencillos son los primeros, que dan la fuerza de sustentación L, la resistencia aerodinámica D y fuerza lateral Y en términos del cuadrado de la velocidad (V2), la densidad del fluido (ρ) y el área transversal (St):
Coeficiente de sustentación
Coeficiente de resistencia
Coeficiente de fuerza lateral
Debido a la complejidad de los fenómenos que ocurren y de las ecuaciones que los describen, son de enorme utilidad tanto los ensayos prácticos (por ejemplo ensayos en
túnel de viento) como los cálculos numéricos de la aerodinámica numérica.